

*** YORK** Commercial and Industrial Air-Conditioning Products

The World of Mini Chillers and Heat Pump Solutions

johnsoncontrols.in

YORK[®] Commercial and Industrial Air-Conditioning Products

Indoor units, Mini Chillers and Heat Pump Solutions

YORK[®] MINI CHILLERS

AIR-COOLED

YVAG 012 to 040 Cooling capacity: 11.2 kW to 40 kW Air-cooled DC Inverter Scroll R410A

YMAE 045 to 140 Cooling capacity: 45 kW to 140 kW Air-cooled DC Inverter Scroll R410A

YMPA 0080 to 0260 Cooling capacity: 78 kW to 255 kW Air-cooled DC Inverter Scroll R454B and R410A

YCAE 065 to 130 Cooling capacity: 65 kW to 130 kW Air-cooled Scroll R410A

YLAA 0195 to 0517 Cooling capacity: 199 kW to 520.6 kW Air-cooled Scroll R410A

WATER-COOLED

YCWE 021 to 042 Cooling capacity: 76.2 kW to 151.9 kW Water-Cooled Scroll R410A

YGWS 100 to 330 Cooling capacity: 350.4 kW to 1150 kW Water-Cooled Screw R134a

YORK[®] HEAT PUMPS

AIR-COOLED YVAG 012 to 040 Heating capacity:

12.6 kW to 42 kW Air-cooled DC Inverter Scroll R410A

YMAE 045 to 140 Heating capacity: 46 kW to 145 kW Air-cooled DC Inverter Scroll R4104

YCAE 065 to 130 Heating capacity: 66 kW to 131.9 kW Air-cooled Scroll R410A

YORK® AIR HANDLING UNIT

YMZ Modular AHU Airflow range: 1000 - 100 000 m³/h 589 - 58 860 CFM

YORK[®] INDOOR UNITS

JCDFCU 20 to 75 Ductable Cooling capacity: 2.0 TR to 7.5 TR 7.0 kW to 26.4 kW

Air flow: 1360 to 5100 m³/h YGFC 04 to 14 Ceiling concealed

JCRCT 500 to 1200 Round Cassette Cooling capacity: 4.5 kW to 10.8 kW Air flow: 850 to 2040 m³/h

1 TR to 4 TR

JCHI 08 to 20 High Wall Cooling capacity: 0.8 TR to 2 TR 2.8 kW to 7.0 kW Air flow: 680 to 1400 m³/h

JCCT 010 to 015 One Way Cassette Cooling capacity: 1 TR to 1.5 TR 3.6 kW to 4.5 kW Air flow: 680 to 850 m³/h

JCCT 15 to 40 Heavy Duty Cassette Cooling capacity: 1.5 TR to 4 TR 5.4 kW to 12.6 kW Air flow: 1020 to 2380 m³/h

JCCT 08 to 13 Compact Cassette Cooling capacity: 0.8 TR to 1.3 TR 3.3 kW to 4.5 kW Air flow: 510 to 850 m³/h

Nominal conditions:

Cooling capacities in kW given for 12/7°C water leaving temperature Δt 5°C and 35°C ambient temperature. Heating capacities in kW given for 40/45°C water leaving temperature and 7°C ambient temperature. Sound data is tested in YORK lab which may vary according to different installation conditions.

Multiple Applications, One Solution

Airports

Commercial Real Estate

Data Centers

Food & Beverages

Government

Healthcare

Hospitality

Industrial & Manufacturing

Life Sciences

Marine and Navy

Oil & Gas

Smart Cities

Rail & Metro

Sport and Entertaiment

Retail

Schools & Higher Education

HVAC - Useful formulas & Conversion

PLANT ROOM EQUIPMENT

Water Flow Measurements

USGPM = m³/hr x 4.404
USGPM = I/s x 15.85
$V/s \times 3.6 = m^3 / hr$

Air Flow Measurements

 $CFM = \sqrt{s \times 2.118}$ $CFM = m^{3}/hr \times 0.588$

Pressure Measurements

1 bar = 100 kPa = 10.2m of water = 14.5 PSIG

1 kPa = 0.1m of water column

1 PSIG = 2.31 feet of water column

Chillers

1 TR =	12000 Btu / hr = 3.5	516 kW		
Chiller Capacity =	Evaporator Flow (USGPM) x Delta T(*F)			
(TR)	24			
Coefficient Of Performance = (COP)	Output Cooling Capacity (kW) Input Electric Energy (kW)	- = 3.516 / (iKW/TR)		
EER = 12/(iKW/TR) = 3.4 x COP				
IPLV / NPLV =				
$\frac{0.01}{\text{COP at 100\%}} + \frac{1}{\text{CC}}$	$\frac{0.42}{\text{OP at 75\%}} + \frac{0.4}{\text{COP at}}$	$\frac{5}{50\%} + \frac{0.12}{\text{COP at 25\%}}$		

Pumps

Pressure (PSI) =	Head (Feet) x Specific Gravity 2.31
Brake Horsepower	GPM x Head (Feet) x Specific Gravity
(BHP) =	3960 x Pump Efficiency

Scan the QR-code

Commercial and Industrial HVAC

Scan the QR-code

YORK[®] Variable Water Flow (YVWF)

Affinity Law

Law 1a: Flow is proportional to shaft speed	$\frac{Q_1}{Q_2} = \frac{N_1}{N_2}$	
Law 1b: Pressure or head is proportional to the square of shaft speed	$\frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2$	
Law 1c: Power is proportional to the cube of shaft speed	$\frac{P_{_1}}{P_{_2}} = \left(\frac{N_{_1}}{N_{_2}}\right)^3$	

Where Q = GPM, H = Head, P = BHP, N = RPM

Cooling Tower

100 x Range (Range + Approach)

Electrical

1 Horsepower (HP) = 746 Watts

1 kW = 3412 Btu

Power (P) = Voltage (V) x Current (I)

Power (3 Phase) = 1.732 x Voltage x Current x Power Factor

```
Speed of Electric
Motor (RPM) (N) = \frac{120 \text{ x frequency of power (f)}}{\text{Number of motor poles (P)}}
```


Scan the QR-code

johnsoncontrols.in/contact-us

